	Midterm Exam	- EECS 398-00	3, Fall 2024	
Full Name:				
Uniqname:				
UMID:				
Room:	○ CHRYS 133	○ IOE 1610	○ IOE 1680	○ COOL 1940
	consists of 14 question	ons, worth a total o	f 100 points. You h	nave 120 minutes
to complete	tne exam. uniqname in the top	wight common of occ	ah naga in tha grass	o pagaridad
• Please write elsewhere. (clearly in the prov Completely fill in bul , you may lose poin	ided answer boxes; obles and square box	we will not grade w	ork that appears
\bigcirc A bubble	e means that you sh	ould only select o	ne choice.	
A square	box means you sho	uld select all tha	t apply.	
*	er to a single two-sic any other resources rs).			
	by the University of I to signify that you	. , .	•	receive a grade,
I have neither given the Honor Code.	ven nor received aid	on this exam, nor	$^{\cdot}$ have I concealed ϵ	any violations of
Signat	ure:			

Version A

Data Overview: Flight Reviews

Skytrax is a website that allows anyone to submit a review for a flight they took. In this exam, we'll work with the DataFrame reviews, which contains flight reviews taken from Skytrax.

The first few rows of reviews are shown below, but reviews has many more rows than are shown.

	airline	author	date	content	cabin	overall
0	delta-air-lines	Philip Tracy	2015-07-14	Flight was two hours late leaving, but once on	Economy	7
1	british-airways	Mike Dickinson	2015-06-12	Flew Club World from Gatwick to Barbados in Ap	Business	5
2	austrian-airlines	Daniel Rubiniak	2015-06-11	TLV-VIE on an A320. Left on time, limited seat	Economy	6
3	cathay-pacific-airways	J Egan	2015-07-19	CX's business class seat is one of the best de	Business	9
4	delta-air-lines	Alwaleed Althani	2015-07-31	We had an early morning departure from Boseman	First	8

The columns in reviews are as follows:

- "airline" (str): The airline flown. Note that an airline can be reviewed multiple times.
- "author" (str): The author of the review. Note that an author can write multiple reviews (and can even write multiple reviews of the same airline!).
- "date" (str): The date on which the review was written. Most of the reviews were written in 2015.
- "content" (str): The content of the review.
- "cabin" (str): The cabin the author flew; either "Economy", "Premium Economy", "Business", or "First".
- "overall" (int): The overall rating the author gave their flight experience, between 0 and 10 (inclusive).

Throughout the exam, assume we have already run import pandas as pd and import numpy as np.

•	
unigname:	
amquam.	

Make sure you have read the Data Overview before beginning! Question 1 (6 pts)

n

		blanks so that he airlines that				n array contai	ining the unique
	san	tas_airlines	= reviews	.loc[(i)	,(ii)](iii)	
(i)	:						
(ii):			(i	ii):		
Que	estio	n 2 (6 pts)					
Cons	sider t	he function ope	erate, defin	ed below.			
	def	<pre>operate(df) df["content</pre>		content"].s	str.split().str.len()	
Cons	sider t	he following six	answer che	oices:			
B.C.D.E.	revie revie We se	ng, because we ws ["content" ws ["content" e an error because we are an error because we are error because we are error because we are error because we were an error because we were well we well we well we were well we well we were well we well] now conta] now conta ause we're t ause a colum	ains the numains the numerying to use no with the	nber of chan nber of wor .str meth name "con	racters per review. ds per review. ods on an invatent" already	iew. alid column. exists.
	_	arts of this que influence your		_	from one a	nother; the co	de in earlier parts
a)	(2 pt	s) What happe	ens after run	nning the fol	lowing bloc	k of code?	
		operate(rev		-			
	() A	\bigcirc B	\bigcirc C	() D	\bigcirc E	○ F'	
b)	(2 pt	s) What happe operate(rev operate(rev	views)	nning the fol	lowing bloc	k of code?	
	\bigcirc A	\bigcirc B	\bigcirc C	\bigcirc D	\bigcirc E	\bigcirc F	
c)	(2 pt	s) What happe	ens after run	nning the fol	lowing bloc	k of code?	
		reviews = c	-				
	\bigcirc A	\bigcirc B	\bigcirc C	\bigcirc D	\bigcirc E	\bigcirc F	

Question 3 (8 pts)

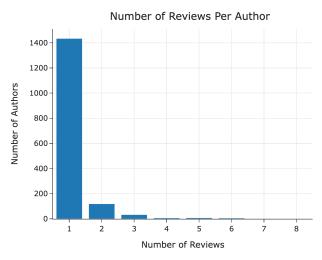
Suppose we define n = reviews.shape[0].

In each of the four parts of this question, we provide an expression that evaluates to a new DataFrame. Depending on the expression, the new DataFrame:

- May or may not have the same number of rows as reviews.
- May have some rows from reviews appear multiple times (i.e. may have duplicated rows). Note that reviews itself does not have any duplicated rows.
- May have rows that appear in a different order than they appeared in reviews.

For example, if df is on the left, the DataFrame on the right has the same number of rows as df, has some duplicated rows (row 1 appears twice), and has the same row order as df (all row 0s before row 1s, all row 1s before row 2s, etc.).

	X	У		Х	У
0	hi	85	0	hi	85
1	there	92	1	there	92
2	fellow	25	1	there	92
3	student	100	3	student	100


Select the options that correctly describe the DataFrame that results from each of the following expressions.

a)	(2 pts)	reviews.loc[np.random.choice([True, F	[alse],	size=n,	replace=Tru	ıe)]
	(i)	Same number of rows as reviews?		\bigcirc Yes	\bigcirc No	
	(ii)	Possibility of duplicated rows?		O Yes	○ No	
	(iii)	Row order guaranteed to be the same as ${\tt revi}$.ews?	○ Yes	\bigcirc No	
b)	(2 pts)	reviews.loc[np.random.permutation(np	.arange	e(n))]		
	(i)	Same number of rows as reviews?		○ Yes	\bigcirc No	
	(ii)	Possibility of duplicated rows?		O Yes	○ No	
	(iii)	Row order guaranteed to be the same as ${\tt revi}$.ews?	○ Yes	○ No	
c)	(2 pts)	reviews.loc[np.random.choice(np.arang	ge(n), s	size=n,	replace=True)]
	(i)	Same number of rows as reviews?		\bigcirc Yes	\bigcirc No	
	(ii)	Possibility of duplicated rows?		O Yes	○ No	
	(iii)	Row order guaranteed to be the same as ${\tt revi}$.ews?	○ Yes	\bigcirc No	
d)	(2 pts)	reviews.loc[np.random.choice(np.arang	ge(n), s	size=n,	replace=Fals	se)]
	(i)	Same number of rows as reviews?		○ Yes	\bigcirc No	
	(ii)	Possibility of duplicated rows?		○ Yes	\bigcirc No	
	(iii)	Row order guaranteed to be the same as revi	.ews?	\bigcirc Yes	\bigcirc No	

uniqname: _____

Question 4 (8 pts)

The bar chart below shows the distribution of the number of reviews per "author" in reviews. For instance, it's telling us that approximately 120 "author"s wrote 2 reviews. Assume that the height of the bar at 8 on the x-axis is exactly 1, and that this is the shortest bar (with no ties).

Hint: The values in the Series that results from calling value_counts() are sorted in descending order.

a) (2 pts) Fill in the blank below so that W evaluates to the value 7.

(i):

Now, consider the values defined below.

W = reviews["author"].value_counts().value_counts().loc[1]

X = reviews["author"].value_counts().value_counts().iloc[1]

Y = reviews["author"].value_counts().value_counts().index[1]

Z = reviews["author"].value_counts().value_counts().index[-1]

b) (2 pts) Which value is equal to 8?

 \bigcirc W \bigcirc X \bigcirc Y \bigcirc Z \bigcirc None of these.

c) (2 pts) Which value is equal to the height of the tallest bar?

 \bigcirc W \bigcirc X \bigcirc Y \bigcirc Z \bigcirc None of these.

d) (2 pts) Which value is equal to the height of the second-tallest bar?

 \bigcirc W \bigcirc X \bigcirc Y \bigcirc Z \bigcirc None of these.

Question	5 ((4)	pts)	١

	I visualization techniques we <i>could</i> use to visualize the distribution of "overall" eparately for Delta Air Lines and United Airlines. At least one answer is correct.				
side-by	-side box plots				
side-by	r-side bar charts				
a scatt	er plot				
a pie cl	hart				
overlai	d histograms				
Questic	on 6 (8 pts)				
	the robust mean of a collection of values to be the mean of all values, once the d smallest values are removed. For example, the robust mean of $2, 2, 3, 7, 12$ is				
lowest rob), fill in the blanks so that worst_robustly evaluates to the "airline" with the bust mean of "overall" ratings. Assume there are no ties in robust ratings, and "airline" has at least 3 ratings.				
dei	f funky(x): return(iii)				
WO	rst_robustly = reviews(i)["overall"](ii)(funky).idxmin()				
a) (6 pt	(ts)				
	<pre></pre>				
(i):	<pre> groupby("overall")</pre>				
	Value_counts(overall) Value_counts(all line)				
(ii)	:				
(iii	.):				
b) (2 pt	ts) What are the input and output types of the function funky?				
	aput: Series, Output: Number				
◯ Iı	aput: Series, Output: Series				
_	aput: Series, Output: DataFrame				
\sim	nput: DataFrame, Output: Number				
_	nput: DataFrame, Output: Series				
() Iı	○ Input: DataFrame, Output: DataFrame				

unigname:	
	7

Question 7 (9 pts)

Consider the DataFrame imp, shown in its entirety below.

	cabin	overall
0	Premium Economy	5.0
1	First	10.0
2	Premium Economy	6.0
3	Business	7.0
4	Premium Economy	9.0
5	Business	6.0
6	Premium Economy	8.0
7	Business	2.0
8	First	9.0
9	Business	NaN
10	Premium Economy	NaN

As in the previous question, we define the **robust mean** of a collection of values to be the mean of all values, once the largest and smallest values are removed. For example, the robust mean of 2, 2, 3, 7, 12 is $\frac{2+3+7}{3} = 4$.

a)	(6 pts) Suppose we use robust mean imputation, conditional on "cabin" to fill in
	the missing values in the "overall" column. In doing so, what are the missing values
	in the "overall" column filled in with? Give your answers as numbers.

Missing value in row 9: Missing value in row 10:

b) (3 pts) Suppose imp represents the DataFrame above, with 2 missing values, and filled represents the DataFrame that results from imputing the missing values in imp in the way described in the previous part. In the following code block, what is the value of comp?

old_means = imp.groupby("cabin")["overall"].mean()
comp = old_means == filled.groupby("cabin")["overall"].mean()

○ True	\bigcirc False
The Series [True, True, True]	The Series [False, False, False]
○ The Series [True, True, False]	\bigcirc The Series [True, False, True]
○ The Series [False, True, True]	○ The Series [False, False, True]
○ The Series [False, True, False]	\bigcirc The Series [True, False, False]

Hint: When grouping, the index is automatically sorted in ascending order.

Question 8 (8 pts)

Consider the DataFrame framer, defined below	Consider	the DataFrame	framer.	defined	below
--	----------	---------------	---------	---------	-------

a) (3 pts) In one English sentence, describe the meaning of the value that the following expression evaluates to.

framer.loc["emirates", "Economy"]

b) (2 pts) What is the value of the following expression?

```
framer.isna().sum(axis=0).shape[0]
```

- The number of unique values in the "airline" column of reviews.
- The number of unique values in the "cabin" column of reviews.
- The number of unique values in the "author" column of reviews.
- The number of unique values in the "overall" column of reviews.
- O None of the above.
- c) (3 pts) Consider the following information.

```
>>> framer.isna().sum(axis=0).sum()
320
>>> reviews["airline"].nunique()
125
>>> reviews["cabin"].nunique()
4
```

What is the value of the following expression? Show your work, and box your final answer, which should be a **positive integer**.

reviews.groupby(["airline", "cabin"])["overall"].mean().shape[0]

unigname:	
diring.	

Question 9 (10 pts)

Consider the DataFrame lines, created by keeping the rows in reviews corresponding to reviews written between 2015-11-24 and 2015-11-28. Remember, each row in lines corresponds to a review of an airline.

Also consider the DataFrame ports, in which each row corresponds to a review of a particular airport. ports has a "date" column, too, and also only has reviews written between 2015-11-24 and 2015-11-28.

Consider the following information.

Below, give your answers as **integers**.

- a) (2 pts) How many values in ports["date"] are equal to "2015-11-24"?
- b) (2 pts) How many values in ports["date"] are equal to "2015-11-25"?
- c) (2 pts) How many values in ports["date"] are equal to "2015-11-26"?
- d) (2 pts) How many values in ports["date"] are equal to "2015-11-27"?
- e) (2 pts) How many values in ports["date"] are equal to "2015-11-28"?

Question 10 (4 pts)

Consider the following SQL query.

```
SELECT author, AVG(overall) AS average_overall FROM reviews
GROUP BY author
HAVING AVG(overall) >= 8 AND COUNT(*) >= 5
ORDER BY average_overall;
```

Now, consider the following four code blocks.

• Block 1:

• Block 2:

[["author", "overall"]])

• Block 3:

• Block 4:

Three of the blocks above correctly assign pop_auth to a DataFrame that is equivalent to the table outputted by the SQL query at the top of the page (ignoring the names of the resulting columns and the values in the index). One of the options is incorrect.

Which block is **incorrect** — that is, which block **does not** assign **pop_auth** so that it is equivalent to the result of the SQL query at the top of the page?

 \bigcirc Block 1 \bigcirc Block 2 \bigcirc Block 3 \bigcirc Block 4

•	
unigname:	
amquam.	

Question 11 (8 pts)

Suppose we define **soup** to be a BeautifulSoup object that is instantiated using the HTML document below. (To save space, we've omitted the tags <html> and </html>.)

```
<title>Aalborg Airport Customer Reviews - SKYTRAX</title>
<a href="https://www.airlinequality.com" rel="nofollow">
  <img src="https://www.airlinequality.com/images/skytrax.svg" alt="SKYTRAX">
</a>
<div class="skytrax-ratings">
  Terminal Cleanliness
       4
    Food Beverages
       9
    SKYTRAX Staff
       3
    </div>
```

In parts (a) and (b), fill in the blanks so that each expression evaluates to "SKYTRAX".

a) (2 pts) soup.__(i)__("alt")

(i):

b) (3 pts) soup.find("td", __(i)__).text.__(ii)__

(i):

(ii):

		bove. (In the document, the three ratings are 4, 9, and 3, but you de these values.)
		<pre>ag.text for tag in soup.find_all("td")] = np.mean([(i) for j in range((ii))])</pre>
(i):		
(ii)	:	
$\mathbf{Questio}$	n 12 (4 pts	s)
identify th	e airport. For	codes, which are strings of three uppercase letters that uniquely example, Detroit's IATA code is "DTW". Many of the entries in the views use IATA codes to describe the route flown.
close atten		g as being a pair of IATA codes separated by "-" or " to " (paracing). For example, in test_review there are two route strings YWG":
close atten "YWG-LHR"	ation to the sp and "EDI to	acing). For example, in test_review there are two route strings
close atten "YWG-LHR" tes	ation to the sp and "EDI to t_review = "	Pacing). For example, in test_review there are two route strings YWG": """I recently traveled YWG-LHR and returned home from EDI to YWG with AC Rouge. I must say I was pleasantly surprised with how well the trip went in both directions, but I'm glad I didn't have to

_	
mianama	
unigname:	
arrigitatio.	

Question 13 (8 pts)

Consider the string thoughts, defined below:

thoughts = """Brought my Sony A5000 for my trip
the Airbus A220v300's bathroom has a window
My favorite jet is the B737-900ER flew it like x 239
all stan the queen B747, 120% the B333st
I like the chonky A380
but I love the A350"""

There are exactly 5 valid **plane codes** in thoughts: "A220", "B737", "B747", "A380", and "A350". For each regular expression exp below,

- specify the number of valid plane codes that the expression re.findall(exp, thoughts) extracts in their entirety, and
- specify the number of other, invalid strings that re.findall(exp, thoughts) also extracts.

The first example has been done for you.

e) $(2 \text{ pts}) \exp = r''(A[23]\d0|B7\d7)$ \$"

Valid plane codes extracted:

a)	$exp = r"B\d{3}"$			
	Valid plane codes extracted:	2	Invalid strings extracted:	1
b)	(2 pts) exp = r"[AB]\d{3}"			
	Valid plane codes extracted:		Invalid strings extracted:	
c)	(2 pts) exp = r"A\d{2}0 B7	'\d7"		
	Valid plane codes extracted:		Invalid strings extracted:	
d)	(2 pts) exp = r"A[23]\d0 E	37\d7"		
	Valid plane codes extracted:		Invalid strings extracted:	

Invalid strings extracted:

Question 14 (9 pts)

The following bag of words matrix represents the frequencies of various words across four reviews. Assume, just for this question, that the only five words that appear in any review are the columns of this matrix, and all calculations use a base-2 logarithm.

	"landing"	"snacks"	"turbulence"	"attendant"	"movies"
Review 0	2	1	3	0	A
Review 1	0	6	B	2	0
Review 2	4	8	0	8	0
Review 3	C	1	3	1	0

The matrix has three unknown **integer** values, A, B, and C. However, we're given that:

- \bullet The TF-IDF of "movies" in Review 0 is $\frac{5}{4}.$
- \bullet The TF-IDF of "landing" in Review 2 is $\frac{1}{5}.$
- The cosine similarity between the bag of words vectors for Reviews 1 and 2 is $\frac{16}{21}$.

a)	(3 pts	s) Wh	at is	the va	lue of A ?	' Show	your	work,	and	box your	final an	swer.
b)	(3 pts	s) Wha	at is	the va	lue of B	? Show	your	work,	and	box your	final an	swer.
c)	(3 pts	s) Wha	at is	the va	lue of C	? Show	your	work,	and	box your	final an	swer.

uniqname:								
Make sure you've written your uniquame in the space provided in the top right corner of every page of this exam.								
Congrats on finishing the exam! Feel free to draw us a picture about EECS 398 below :)								